Impacts of data length on optimal parameter and uncertainty estimation of a land surface model

نویسندگان

  • Youlong Xia
  • Zong-Liang Yang
  • Charles Jackson
  • Paul L. Stoffa
  • Mrinal K. Sen
چکیده

[1] The optimal parameters and uncertainty estimation of land surface models require that appropriate length of forcing and calibration data be selected for computing error functions. Most of the previous studies used less than two years of data to optimize land surface models. In this study, 18-year hydrometeorological data at Valdai, Russia, were used to run the Chameleon Surface Model (CHASM). The optimal parameters were obtained by employing a global optimization technique called very fast simulated annealing. The uncertainties of model parameters were estimated by the Bayesian stochastic inversion technique. Forty-four experiments were conducted by using different lengths of data from the 18-year record, and a total of about 3 million parameter sets were produced. This study found that different calibration variables require different lengths of data to obtain optimal parameters and uncertainty estimates which are insensitive to the period selected. In the case of optimal parameters, monthly root-zone soil moisture, runoff, and evapotranspiration require 8, 3, and 1 years of data, respectively. In the case of uncertainty estimates, monthly root-zone soil moisture, runoff, and evapotranspiration require 8, 8, and 3 years of data, respectively. Spin-up has little impact on the selection of optimal parameters and uncertainty estimates when evapotranspiration and runoff were calibrated. However, spin-up affects the selection of optimal parameters when soil moisture was calibrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Parameter and Uncertainty Estimation of a Land Surface Model: Sensitivity to Parameter Ranges and Model Complexities

Most previous land-surface model calibration studies have defined global ranges for their parameters to search for optimal parameter sets. Little work has been conducted to study the impacts of realistic versus global ranges as well as model complexities on the calibration and uncertainty estimates. The primary purpose of this paper is to investigate these impacts by employing Bayesian Stochast...

متن کامل

Camera Arrangement in Visual 3D Systems using Iso-disparity Model to Enhance Depth Estimation Accuracy

In this paper we address the problem of automatic arrangement of cameras in a 3D system to enhance the performance of depth acquisition procedure. Lacking ground truth or a priori information, a measure of uncertainty is required to assess the quality of reconstruction. The mathematical model of iso-disparity surfaces provides an efficient way to estimate the depth estimation uncertainty which ...

متن کامل

An Evaluation of the Optimal Change Scenarios of Land Use and their Impacts on the Hydrological Parameters: A Case Study of Dinevar Watershed

EXTENDED ABSTRACT      The land use change of watersheds has entailed many impacts on the processes of erosion and sediment yield over the time, and has caused the loss of soil quality and fertility. On the other hand, an increase in the sediment generation and its accumulation would reduce the capacity of the reservoirs. In this respect, the purpose of this study was to evaluate the effects o...

متن کامل

Simulating Optimal Scenarios of Urbanization Impacts on Flow Hydro-graph and Sediment Concentration in Ziarat Watershed, Iran

Extended abstract 1- INTRODUCTION Landuse change due to human activities is one of the important issues in regional planning. Considering the advantages and capabilities of the distributed hydrological models, they are appropriate for the survey of landuse changes as well as their quantitative estimates. Land evaluation methods are used to determine the compatibility of the land according to ...

متن کامل

Using different hydrological variables to assess the impacts of atmospheric forcing errors on optimization and uncertainty analysis of the CHASM surface model at a cold catchment

[1] Estimation of parameters for land-surface models, along with their corresponding uncertainties, relies on the input data for the atmospheric forcing variables including atmospheric pressure, temperature, humidity, wind speed, precipitation, and incoming shortwave and longwave radiation. Most studies assume that forcing data are accurate and contain no random or systematic observational erro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004